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Flow around an unsteady thin wing close to curved 
ground 

By QIAN-XI WANG 
Department of Modern Mechanics, University of Science & Technology of China, Hefei, 

Anhui 230026, China 

(Received 22 December 1989 and in revised form 10 September 1990) 

The method of matched asymptotic expansions is applied to the flow analysis of a 
three-dimensional thin wing, moving uniformly in very close proximity to a curved 
ground surface. Four flow regions, i.e. exterior, bow, gap, and wake, are analysed and 
matchcd in an appropriate sequence. The solutions in expansions up to third order 
are given both in nonlinear and linear cases. It is shown that the flow above the wing 
is reduced to a direct problem, and the flow beneath it appears to be a two- 
dimensional channel flow. The wake assumes a vortex-sheet structure close to  the 
curved ground, undulating with the amplitude of the ground curvature, and the flow 
beneath i t  is also two-dimensional channel flow. As a consequence, an equivalence is 
found between the extreme curved-ground effect and the corresponding flat-ground 
effect, which can be treated by the image method. 

1. Introduction 
Studies of the aerodynamic ground effect for moving vehicles have attracted many 

investigators in the past half-century. There is a considerable literature dealing with 
the ordinary flat-ground effect. 

The present study is focused on the so-called extreme ground effect for a body 
moving in very close proximity to a weakly curved ground (or water surface). It is 
of practical importance in the context of high-speed ground transportation vehicles, 
and with respect to the interaction between a ship hull and an adjacent canal wall 
or second ship (Tuck 1975). It is also of interest with respect to wing-in-ground-effect 
vehicles, which are promising efficient modes of transportation for large, long- 
distance cargo (Ollila 1979). Several prototypes have been built to demonstrate 
technical feasibility and to develop economically practical systems. For example, the 
X-144 Aerofoil Boat designed by Lippisch (Koeivar 1977) skims over water and 
ground. The vehicle has a wing of chord 7 m and span 9 m, and it can cruise at an 
altitude of 1.5 m over water waves up to 1 m high. 

U p  to now, the extreme flat-ground-effect problem has only been studied by a few 
people. Strand, Roice & Fujita (1962) first indicated the ' channel-flow ' character of 
the tightly constrained flow between the body and the ground. Widnall & Barrows 
(1970) gave the third-order analytical solution of the matched asymptotic expansions 
for a two-dimensional flat plate in the linear case. Regarding the nonlinear approach 
to the extreme flat-ground effect, the research work to date is limited to  the first- 
order approximation. Tuck ( 1980) worked on the first-order boundary-value problem 
for a thin airfoil, using the method of matched asymptotic expansions. Kewman 
( 1  982) gave the first-order analytical solution for a lifting surface of low aspect ratio. 
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And shortly after that, Tuck (1983) formulated the first-order boundary-value 
problem for the flow beneath a wing of arbitrary aspect ratio. 

Our approach to the problem here has two differences to previous work. First, the 
previous investigations have been limited to the first-order gap flow approximation, 
except for the linear study of a two-dimensional flat plate. To consider the influence 
of the flow above the wing, a complete mathematical model should be formulated. 

Secondly, the ground (or water surface) is actually curved in most of the practical 
problems related to ground effect. Sometimes, the amplitude of the ground 
undulation is comparable with the clearance beneath the wing, and so the curvature 
influence will be of the same order as the corresponding flat-ground effect, which will 
be studied in the present paper. In  the complementary case, the curvature influence 
only causes a small perturbation of the flat-ground effect. 

In  this paper, the theory of a third-order matched asymptotic analysis is 
established for a three-dimensional thin wing moving uniformly in very close 
proximity to ground of curved surface in both the linear and nonlinear cases. It is 
shown that the flow field above the wing can be reduced to a direct problem, 
represented by a source-sink distribution on the upper surfaces of the wing and the 
wake and by a concentrated line source along the edges of the wing and the wake. 
The flow beneath the wing can be described by a set of linear two-dimensional 
elliptical partial differential equations. Based on this theory, some kinematic and 
dynamic equivalent relations between the curved-ground effect and its corresponding 
flat-ground effect in expansions up to third-order perturbations have been found. 

2. General formulation of the boundary-value problem 
A three-dimensional thin wing is set in motion with constant horizontal velocity 

U in very close proximity to a curved ground, as sketched in figure 1. If 
incompressible potential flow is assumed, the velocity potential $(x, y, 2, t )  will 
satisfy the Laplace’s equation with impermeable conditions on the wing surface 
z =fa(z, y,t) and the wavy ground surface z = f g ( x - t ,  y),  i.e. 

$zz + $yy + $22 = 0, (1  a )  

$2 =fat+dzfaz++Jay on z = f a ( x , ~ ,  t ) ,  ( 1 b )  

$4 = ( $ z - - l ) f g z + $ y f g y  on z = f g k - t , y ) ,  (14 

$ = x, at  infinity. ( I d )  

All quantities mentioned above and below have been normalized by c ,  U ,  and p,  
where c and p are the wing chord and fluid density respectively. 

In addition, on the wake surface, which has shape z = fw(x, y, t )  to be determined, 
the kinematic and dynamic boundary conditions should be imposed as follows : 

$2 = f w t  + $zfwz + $yfwy on = f w &  Y, t ) ,  ( l e )  

fk Y X ,  t )  -P@, Y,f,-, = 0, ( I f )  

where superscripts + and - mean the upper and lower wake surfaces respectively. 
Equations (1  a-f ) comprise the present boundary-value problem. 

After $(x, y, z ,  t )  is determined, the pressure distribution on the wing surface will 
be given by Bernoulli’s equation 

P = -[$t+$(+:+$;+$:)-$]. (2) 
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Leading edge f, Trailing edge f, 

FIGURE 1 .  Sketch of a wing moving in close proximity to the curved ground, and the definition 
of the coordinate system and the four asymptotic regions. 

Concerning the case of extreme ground effect, the following geometrical 
assumptions are made: (i) the gap clearance and the amplitude of the ground 
undulation have the same order of magnitude, of O ( E ) ,  i.e. 

(ii) the variation of the wing elevation due to  the combined effects of thickness, 
camber, angle of attack, and vertical motions is a small quantity of O(a) ,  i.e. 

Two cases will be considered below : (i) the nonlinear case, a - E ;  (ii) the linear case, 

For convenience when estimating the orders of magnitude of different quantities, 
a 4 E .  

we rewrite the equations of wing, ground, and wake surfaces as follows: 

z = E+aFa(z, y , t ) ,  z = €Fg(x-t, y ) ,  z = €F,(Z,  y , t ) ,  

where Fa, Fg, and F, are functions of O(1). 
Compared with classical lifting-surface theory, the main difficulties of the present 

problem arise from two aspects, i.e. the multiple lengthscales in different parts of the 
flow field and the infinite boundary (the curved ground). In order to solve the 
problem by the method of matched asymptotic expansions, the flow field is divided 
into four separate asymptotic regions, as shown in figure 1, namely : 

( i )  Exterior region (E):  the region above the wing and wake surfaces; 
(ii) Gap region (G) : the region beneath the lower surface of the wing; 
(iii) Wake region (W): the region beneath the wake surface; 
(iv) Bow region (B):  any point in the region a distance of O ( E )  from the wing’s 

leading edgc. 
Here the leading edge means that part of the edge of the wing that does not shed a 
vortex sheet, the velocity being singular in its vicinity. The remaining part of the 
edge is referred to  as the trailing edge. Because the velocity is finite near the trailing 
edge according to  the Kutta condition, and the characteristic scale of the flow field 
is not changed across it either above or below the wing, there is no need to define the 
stern region a t  all. This is different from the previous papers mentioned in the 
Introduction, in which the stern region has been defined. 

The mathematical solution to this problem simply requires expanding the solution 
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in each region and matching them in the overlap parts. An appropriate sequence in 
which to  conduct the matched asymptotic analysis in the various regions consists of 
the following four steps: 

(i)  the exterior solution is relatively simple and is found first ; 
(ii) the bow solution is deduced from the bow-region limit of the exterior solution ; 
(iii) the potential expansion in the gap region and the corresponding boundary- 

(iv) the wake region is analysed in an analogous manner to the gap region. 
value problem at each order solution are obtained based on the above results; 

3. Flow analysis by the method of asymptotic expansions 

In this region, the asymptotic expansion of the velocity potential is written as 

3.1. Exterior region 

$E = x+a$F(Z,Y,z,t)+o(a), (4 ) 

and the boundary conditions on the wing and wake surfaces can be satisfied on the 
plane z = 0. Hence the boundary-value problem for $? is formulated as follows: 

where .E denotes the wing plane A plus the wake plane W .  The upwash velocity w 
takes the form 

where the superscript + means the upper wing surface. 
Based on (5a-d)  and the principle of minimum singularity (Van Dyke 1964), $? 

can be determined by a source-sink distribution on the upper surfaces of the wing 
and wake and a concentrated line source along the leading edge r, of the wing and 
the sides v of the wake, i.e. 

where the unknown line source u ( s l ,  t )  and the surface source w(xl, yl, t )  on the wake 
will be determined by matching $F with the first-order solutions of the gap region 
and the wake region. 

Now we examine the asymptotic behaviour of 4: in the vicinity of the leading 
edge. Let us consider an arbitrary point P(5) on the leading edge and set a local 
Cartesian coordinate system (n, 7 ,  z )  with its origin a t  P(s)  and with the n- and 7-axes 
normal and tangent to r, at  P(5) respectively in the horizontal plane, as sketched in 
figure 2. Thus 4: on the 7 = 0 plane can be written as 

where G(nl, 71, t ; s )  = w(x(nl,  71, s), y(n,, 71, s ) ,  t ) ,  and n, and 71 are the coordinates of 
the point s1 in the second integral. 
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‘ t  

FIGURE 2. Definition of the local Cartesian coordinates (n, 7 ,  z ) .  

The scales of bow region are O(s)  in the n- and z-directions and O ( 1 )  in the r- 
direction, while the curvature of the leading edge is assumed to be of O( 1). Hence the 
local coordinates n, z should be strctched into 

N = n/s, Z = z / s .  (8) 

Thc inner limit of +:, with N ,  Z fixed as s+ 0, should be calculated to match with 
the bow-region solution. In  doing so, the self-induced potential in the neighbourhood 
of the line source in (7) must be treated carefully. Here it is analysed based on the 
method which Batchelor (1967) used to treat the similar problem for a vortex line. 

First, the second integral in (7) is divided: 

where 1= is a constant of O(1). Thus the first integral is singular and the quantity in 
the brackets is not. 

Next, noticing that as 1 = s,-s+O in the contour r,, T,  = Z+O(15), n, = 
-+,bl2+0(Z3), where b is the curvature of r,, we have 

[(n, - n)2 + T ;  + 221; - [n* + z2 + z2( 1 + bn)]’ l+o(l’ n, [ [n2 + z 2  + 1 2 (  1 + bn)]; 

Let us rewrite the integrand of the first integral in (9) as follows: 

as l + O .  T 1 1 - 1 

4 8 1 ,  t )  - d s ,  t )  
[(n, -n)’ +T; + z2] f  

I +  

g(sI> t )  - (4% t )  
[(nl - n)2 +T;  + 221; - [n2 + z 2  + P ( I +  b n ) ] ~  

} (10) 
1 1 

[(n, -n)2 +T;  +z2];-[n2 +z2 + 1 2 (  1 + bn)$ ’ + a(s, t)  { 
with the first singular term being integrable and the remaining terms being finite and 
continuous. 

And then, substituting (10) into (9), we obtain the inner limit of @: 

where 



180 &.-X. W U ~  

The inner limit of $," on the T = 0 plane is the same as the free-stream solution. In 
local coordinates this is written 

(4,")" = xIfL-ENsin/3, (12) 

where /3 is the angle between r, and the x-axis. 

3.2. Bow region 

Noting the characteristic scales of the bow region mentioned in $3.1 and using the 
solutions of ($,")" and (4,")" given in (12) and ( 1  l ) ,  we can write the velocity potential 
in the bow region in the following form: 

a $" = xIfL-ENsin/3+-$,B(N, s, 2, t )  +a In s$f(N, s, Z,  t )  +a$ F ( N, s, Z? t )  +o(a) ,  

where $: (k = 0 , 1 , 2 )  should satisfy the two-dimensional Laplace's equation, i.e. 

(13) 
€ 

The asymptotic limits of $" matched with neighbouring flow regions will be 

From (12) and ( l l ) ,  we have the limits matched with the exterior region: 
determined in order. 

($,"I" = 0, 

($:)E = --lt)(N2+Z2)i+c(s,t). x 

In the gap region we can get from ( 1  b )  

so that 

Comparing (15) and (13), we have 

4: = O ( a ) ,  

$'(z, y, z ,  t )  = $"(x, y, 0, t )  + O(as) --+ $"IfI, + d$Elf, as n + 0. (15) 

q~ = s + ~ $ , ~ ( x , y , t ) + a ~ n € ~ ~ ( Z , y , t ) + a $ ~ ( x , y , t ) + o ( a ) .  (16) 

Hence the asymptotic limits of $: (k = 0 ,1 ,2 )  matched with the gap region are 

(17a) I ($:)" = $El,., for k = 0,1, 

($3" = $ ~ l f L + ~ ~ o c I f L .  

The boundary conditions of the bow region on the surfaces of the wing and ground 
can be obtained from ( 1  b ) ,  (1  c) respectively, i.e. 

on Z = Fa, N < 0, (17b)  I $& = 0 for k = 0 , l  

$?z = L ( W t N ) N  

and 
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whcrc E', = FaIfL,Fg = FgIrL and Fan = FanIr,, Fgn = FgnIr,,. 

Now we are ready to solve the boundary-value problem (14a, b ) ,  (17a%). It can be 
obtained that 

Substituting (18) into (17b)  and (17c),  we have 

$fz = 0 on Z =Fa, 
$Fz = O on Z = Pg. 

Thus the solution of $f takes the form 

4: = $ B + C l ( S ,  t), 

where $B is the solution of Laplace equation (14a), satisfying the homogeneous 
boundary conditions (19). The corresponding complex potential GB can be solved by 
Schwarz-Christoffel conformal mapping (Widnall & Barrows 1970) in the implicit 
form : 

%+i[ 1 +exp r+)] = N+i(Z-pg) 

Q x  H a  
9 

where Ha = Fa-Fg, and Q is a coefficient to be determined. Thus the asymptotic 
expressions for $F are 

'I ($f)E = ;ln Q x  (u, (N2 + Z 2 ) i )  + cl(s,  t )  

= Q(--)+c,(s,t). N 1  

H a  

Comparing (21a)  with (14b) and (17aL we get the coefficients Q and c 

a ( s ,  t )  = H a  $&lrL, 1 Q = -  

cl(s, t )  = c(s, t )  --In - $FnlfL. 2 [;j 1 
Finally, the boundary conditions for 4: (k = 0 , 1 , 2 )  along the leading edge are 

obtained from (17a), i.e. 

$:IfL = 0, 

3.3. Gap region 

I n  the gap region, x, y = 0(1), z = O(e) ,  and from ( l b ) ,  we have 

$; = O(a). 

Hence we have obtained the expansions of $ G ,  as shown in (16). 
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Next, we take a control volumc clement in the gap region in thc range 
x < 6 < x+dx, y < 7 < y+dy, and fg < z < f;. Then the equation of conservation 
of mass is written as 

Substituting (15) into (23), we get, 

Hat + (Ha $g)x  + ( H a  $:)y = O(ac) ,  (24) 

where H, = F; - Fg. Again, ( 1  f )  has been given as the Kutta condition at the trailing 
edge rT, which can be simplified in the form 

$P+t[($,")'+($f)'] = 2+a($,"+$fi)+0(ac) On rT. (25) 

Substituting (16) into (24), (25), and equating terms of the same order, we can for- 
mulate the boundary-value problem for each order of the potential $F(k = 0 ,1 ,2 ) ,  
which is again complemented with the leading-edge boundary conditions (22). 

For the first-order solution $,"(x, y , t ) ,  we have 

F,+F,+(Ha$,G)x+(Ha$~y)y = 0 on A ,  (26a) 

$: = 0 on r,, (26b) 

$oct+~:x+t~~$,G,~"~$:y~21 = 0 on r,. (26c) 

(27a) 

For the second-order solution #(x, y: t ) ,  we have 

on A ,  

on r,, (27 b )  

(Ha $ 7 x ) z  + (Ha $?y)y = 0 
- 

G - Ha 
$1 - y $ : n  

$$+$?x+$:x$?x+$,"$?u = On rT* 

For the third-order solution $;(x, y, t ) ,  we have 

Thus the gap flow problem is reduced to a series of two-dimensional linear elliptical 
equations, in which the gap clearance appears as a variable coefficient, subjected to 
nonlinear mixed boundary conditions. Physically, the equation governing $: can be 
interpreted as the conservation of mass in the two-dimensional channel beneath the 
wing with known gap clearance and added mass. The equations governing $7 and $: 
come from the conservation of mass in the same two-dimensional channel with no 
added mass. 

In  classical wing theory, the wake generally sheds from the part of the wing edge 
after the wing tips, except for a highly unsteady wing (cf. Newman & Wu 1973). 
Nevertheless, for a wing in nonlinear extreme ground effect, the lateral deflection of 
streamlines in the gap region is comparable with the span, and the transition points 
between the leading edge r, and the trailing edge rT are usually not a t  the wing tips. 
They should be determined as part of the solution. Newman (1982) found the 



Flow around an unsteady thin wing close to curved ground 183 

transition point locations, where the mean velocity vectors (above and below the 
wing) are tangent to the edge contour for a low-aspect-ratio wing in extreme flat- 
ground effect. Tuck (1983) extended this conclusion to arbitrary wings in steady flow. 
Here we will show that such a conclusion remains valid for unsteady wings in 
extreme curved-ground effect as well. In  fact, from (26b) we know 

q5yT = 0, q5:t = 0 on f,. (29a) 

q5~t-sin~q5~n+cos~q5~+~[(q5~n)2+(q5~T)2] = 0 on r,. (29b) 

Similarly (26c) can be written as 

If we demand that the tangential velocity q5:, be continuous across the transition 
point, both the leading- and trailing-edge conditions (29 a )  and (29b) should be 
satisfied simultaneously, so that q5Fn = 2 sin P. Hence the mean normal velocity 
components a t  the transition points are zero, as the normal components of the 
velocity above the wing are -sinP. The higher-order correction of the transition 
position is of less importance, because it does not affect the solutions up to third 
order. 

Now we consider the linear problem, in which case a + 6. The boundary-value 
problem (26), (27) and (28) can be reduced to the following forms: 

For the first-order solution q5:(x, y, t ) ,  we have 

q5:t+4:x = #G+@ on f,.) 

One can find that the first-order transition points are located at the wing tips in 
the linear problem. 

3.4. Wake region 
When a wing moves through an infinite fluid, the vortex sheet shed from the wing 
edge often rolls up (Batchelor 1967). This is partly because the velocity components 
q5,-sinp and q5z of the flow that are induced are of the same order, O(a).  

For a wing in extreme curved-ground effect, on the other hand, the normal velocity 
component $q5Fn of O ( a / e )  of the mean flow induced above and below the wing is much 
larger than the vertical velocity of q5z, which is of O(a). Also, the flow mean is outward 
from the wing planform A in the vicinity of the trailing edge, which carries the vortex 
sheet so that it moves predominantly in the horizontal direction. The vortex sheet 
will assume a weakly curved surface close to the curved ground. 
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Thus, there is no essential mathematical difference between the wake region and 
gap region, except for the fact that the boundary surface of the wake region 
z = eFw(x, y,t) is to be solved. The approximate potential equation in the wake 
region can be obtained as in (24), (25), namely 

(33a) 

(33b) 

where HW = Fw -Fg is the clearance between the wake surface and the ground. In 
addition, the continuity conditions should be imposed across the trailing edge r,: 

w w  HEW + (H $, )z + (HW$,W), = O ( 4 ,  

$? +t[($,")2 + ($,W)21 = i+ 4$E + $:)Lo + O ( W >  

HW = Ha on r,, 
$ W = $ G ,  $:=$: on r,. 

The asymptotic expansions of $w and HW are 

(33 c) 

( 3 3 4  

a 
HW = na+;Hr(x,  y, t )  +alneHy(x, y, t )  +aH,W(x, y, t )+o(a ) .  (34b) 

Substituting them into (33), we can formulate the following boundary-value 
problems. 

For the first-order solution $P(x, y, t )  and H,W(x, y, t ) ,  we have 

w, w w  H: + H,W, + (Ho $oJz + (HOW $;Iy = 0 

$; +a +arc$,w,)* + ( $ 3 2 1  = 0 

H,W=O, $,"=$,", $o",=$,"n 

on 

on u, 

on r,. 
= 0 

(35) 

For the second-order solution $,"(x, y, t )  and H,W(x, y, t ) ,  we have 

on W ,  

w w  w w  H: +HE + (Ho + (Ho $I,), + (BY $3, + $;)v = 0 on 

$:+E+$oZ$lz+$o",$; = 0 
w w  

$F = c(s,t)--1n - $o", 2 [;I 
H F = 0 ,  $p=$;, $E=$Zn 

where Ha = A,+a/eH,W(x, y, t ) ,  and the boundary conditions of$," (k = 0,1 ,2)  at  the 
sides v of the wake are deduced in the same way as those for the leading cdge of the 
wing in the gap region. The condition for determining the position of v is that the 
mean (above and below the wake) velocity vector on v is tangent to that curve. 



Flow around an unsteady thin wing close to curved ground 185 

These boundary-value problems can also be simplified for the linear problem in the 
same way as in the gap region. In particular, one can find that the first-order wake 
surface is 

z = € + € F g ( x - l , y ) ,  

with its sides being lines starting from the wing tips and parallel to the flow direction 
a t  infinity. 

4. The equivalence between the extreme curved-ground effect and the 
corresponding flat-ground effect 

Now some kinematic and dynamic equivalent relations between the extreme 
curved-ground effect and the corresponding flat-ground effect can be found, which 
are valid in both linear and nonlinear cases. To this end, two relevant problems are 
compared : 

(i) A thin wing z =fa(x, y, t ) ,  (x, y) on A ,  moves with the velocity u = - i  in very 
close proximity to the curved ground surface z = fg(x - t ,  y) ; 

(ii) An equivalent wing z =fa(., y, t )  -fg(x--t, y), (x, y) on A ,  moves with the same 
velocity in very close proximity to the flat ground surface z = 0. That is, the under 
surface of the equivalent wing undulates in such a way as to match with ground 
curvature of the problem (i), which is moving past at the free-stream velocity. 

Thus we can see that, for the above-mentioned two relevant problems, $:, $r, and 
HT are the same according to (26) and (35) respectively. From (6) and (21), we still 
know that solutions in the exterior region $E = x+a$F are equal to each other. 
Similarly, the following terms up to  second-order remain unchanged in the bow 
region. Equations (27) and (28) state that  the gap solutions up to third-order 
$G = x+ a/€$," + a In €47 +a$: are same. Further, (36) and (37) state that the same 
results hold for the wake-region solutions $w = x + a/c$r + a In e&"' + a$F, and for 
the clearance HW = Ha + a / e H r  +a In eHF + U H F .  These results have been identified 
as the kinematic equivalence between the extreme curved-ground effect and the 
corresponding flat-ground effect. 

In addition, the dynamic equivalence between those two problems can be deduced 
from Bernoulli's equation. First, it is easy to see that the added pressures over the 
value at infinity are same up to third-order (i.e. P = a/EPo + a In €PI + UP2), except for 
the bow region. In  the bow region, the added pressure can be expressed as 

One can see from the solution (20) of $: that the first-order pressures on the surface 
of the wing are equal in this region. But, from the results of the pressure integration 
over the wing surface, the total aerodynamic forces (lift, pressure drag and pitching 
moment, etc.) again prove to be the same up to third-order terms for both cases, 
where the lift and pitching moment take the form 

(39) 
CI 

6 
F = -Fo+aln~F,+aF2 

and the pressure drag takes the form 

(40) 
a2 D = -Do + a2 In eDl + a2D2. 
€ 
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Based on the analysis in $3, one can see that the first- and second-order 
aerodynamic forces Fo, Do and F,, D, are dependent only on the first- and second- 
order gap solutions q5: and $7 respectively. However, to obtain the third-order 
aerodynamic forces F2 and D,, one must obtain the solutions of $:, H Y ,  @, and 4: 
in a matching procedure. 

Incidentally, i t  is known from the dynamic equivalence that the dynamic effect of 
the ground curvature is only dependent on the ground elevation beneath the wing to 
the third-order approximation. 

5. Summary and conclusions 
The nonlinear problem for a thin wing moving uniformly in very close proximity 

to curved ground has been formulated and analysed by using the method of matched 
asymptotic expansions. Summarizing the analyses, the following conclusions can be 
made. 

The downwash of O(a) from the under surface of the wing induces first-order two- 
dimensional channel flow @ with a horizontal velocity of O ( L X / E )  in the gap region 
beneath the wing, which can be described by a linear two-dimensional elliptic partial 
differential equation. Solutions are required subject to separate leading-edge and 
(nonlinear) trailing-edge boundary conditions, with the transition point occurring 
where the mean (above and below the wing) velocity vector is tangent to the wing 
edge. These results were given by Tuck (1983) for a steady wing near a plane wall 
using intuitive arguments, and are now extended to an unsteady wing near curved 
ground in a systematic asymptotic procedure. It is also found that the influence of 
the curvature of the ground is of the same order as the corresponding plane-ground 
effect; in particular, i t  is of 0(1) for the nonlinear problems. 

The wake surface assumes a vortex-sheet structure with an elevation of O ( E )  close 
to the curved ground, rather than the vortex rolls that appear in conventional wing 
theory. The first-order wake flow @' beneath the wake is also two-dimensional 
channel flow with the horizontal velocity of O ( ~ / E ) ,  except that the boundary surface 
of this region is a free surface similar to the water surface in shallow-water wave 
theory. The condition for determining the position of the sides v of the wake is that 
the mean (above and below the wake) velocity vector on v is tangent to that curve. 
For the linear problems, the first-order wake surface undulates in such a way as to 
match with the ground curvature, with its sides being two lines starting from the 
wing tips and parallel to the flow direction at infinity. 

The exterior flow above the wing is induced by the upwashes of O(a)  from the 
upper surfaces of the wing and wake. In addition, it is induced by the ' crack-inflow ' 
(or 'crack-outflow ') with a mass flux of O(a)  around the leading edge rL of the wing 
and the sides v of the wake, due to the first-order channel flows with horizontal 
velocity of O(a / s )  in the gap region and wake region. Therefore, in an analogous way 
to Windnall & Barrows' (1970) linearized two-dimensional study, the disturbance 
potential 4," of O(a)  in the exterior region has been expressed by a source-sink 
distribution on the upper surfaces of the wing and wake, and the concentrated line 
source around the leading edge of the wing and the sides of the wake, with the 
strength of the singularities known or given in terms of the first-order gap solution 
q5: and first-order wake solutions @, H Y .  

The disturbance potential q5F of O(a)  in the exterior region will affect the 'crack- 
inflow ' (or 'crack-outflow ') around the leading edge r, of the wing and the sides u 
of the wake, and the pressure distribution on the wake surface. As a result, the 
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second-order flows @, #? of O(aIne) and third-order flows #: and @' of O ( a )  are 
induced in the gap region and wake region, which are two-dimcnsional channel flows 
which can be described by linear partial differential equations with two independent 
variables. 

As for the dynamic problem of the wing, the matching is unnecessary up to the 
second-order approximation. In fact, to obtain the second-order aerodynamic forces, 
one just needs the gap solutions $$ and 4:. However, to obtain the third-order 
aerodynamic forces, one must also compute the solutions of @', H,W, #:, and q5f in 
a matching procedure. To a first-ordcr approximation, the lift is proportional to or/€, 
and the ratio of lift to pressure drag is proportional to a. In  other words, for a fixed 
a,  the smaller the clearance is the larger the lift will become ; and as the ratio of a /€  
is fixed to meet a certain lift demand, the pressure drag will be decreased with the 
clearance. Thus, when a wing is designed to take advantage of the ground effect, the 
greatest interest lies in very closc proximity. 

Finally, the important result given in the present paper is that the unsteady flow 
problem for a thin wing in extreme curved-ground effect can be reduced to  an 
equivalent one in flat-ground effect. Some kincmatic and dynamic equivalent 
relations between them have been established. 

The author wishes to express sincerc thanks to Professor Bing-Gang Tong and 
Professor Li-Xian Zhuang for many stimulating discussions concerning this work, 
and his appreciation to Professor T. Y.  Wu of CALTECH for his valuable suggestions 
about this topic. The author is also grateful to the referees of this paper for their 
critical review of the manuscript. 
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